If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+54x=180
We move all terms to the left:
x^2+54x-(180)=0
a = 1; b = 54; c = -180;
Δ = b2-4ac
Δ = 542-4·1·(-180)
Δ = 3636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3636}=\sqrt{36*101}=\sqrt{36}*\sqrt{101}=6\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-6\sqrt{101}}{2*1}=\frac{-54-6\sqrt{101}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+6\sqrt{101}}{2*1}=\frac{-54+6\sqrt{101}}{2} $
| 4(x-6)=8x-(4x-24) | | 2(2x+4)=6x+7-2x+1 | | -87=18+15n | | 19=-4+2/5(x)+10 | | 3x-3+4=9 | | (x*x)+3x-550=0 | | 7n/10-n+9/5=6 | | a+32+a=101+a | | -3b+2=4b=12 | | 4+3x=100 | | 360=3/2p | | (X•x)-3x-10=0 | | -17=-3s+-2 | | x^2+54x-180=0 | | 1/2(14-8a)=9a | | -2(x+1)=-2x*5 | | 4x+36+3x+9=180 | | 1/5x+1/4=4(5/6x-3) | | 9/2(7/2p+1)=-90 | | 38=−5d+8 | | (x/20)=(12/8) | | a÷6=-11 | | 8-(2/3x)=11 | | (3x-10)+(4x-5)=90 | | (8/12)=(20/x) | | 40+14x=2(-4x+-13) | | 1/5x+12=15 | | 4x-5=7x-21 | | 4x+11+2x-5=48 | | 27=2v+13 | | 26x-2(4x-12)=30 | | F(x)=11,x |